

Introduction

Tenderness Example Accuracies

Interim EPDs

Implementation

Incorporation of DNA Tests into a Genetic Evaluation

Stephen D. Kachman

Department of Statistics University of Nebraska–Lincoln

July 2, 2008

Introduction

Tenderness Example

Accuracies

Interim EPDs

Implementation

• Objective is to evaluate the genetic potential of an animal

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ

- Phenotypic information
- Pedigree information

Introduction

Incorporation of DNA Tests

Introduction

- Tenderness Example
- Accuracies
- Interim EPDs
- Implementation

• Objective is to evaluate the genetic potential of an animal

- Phenotypic information
- Pedigree information
- Incorporate DNA information
 - Marker Information
 - Molecular Breeding Values

Introduction

Incorporation of DNA Tests

Introduction

- Tenderness Example
- Accuracies
- Interim EPDs
- Implementation

• Objective is to evaluate the genetic potential of an animal

- Phenotypic information
- Pedigree information
- Incorporate DNA information
 - Marker Information
 - Molecular Breeding Values
- Implementation
 - Fit alongside current approaches
 - Practical
 - Flexible

Introduction

- Tenderness Example
- Accuracies
- Interim EPDs
- Implementation
- Fostered by the NBCEC
- Team
 - Rohan Fernando (Iowa State)
 - Rob Tempelman (Michigan State)

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ

Outline

Introduction

Incorporation of DNA Tests

Tenderness Example

Accuracies

Interim EPDs

Implementation

- Quick overview of current approach to genetic evaluation
- DNA marker information
- Incorporation into genetic evaluations
 - MBVs as correlated traits
 - Similarities and differences with other correlated traits

- Challenges and how to address them
- Initial analysis
- Some implications
- Where do we go from here?

Nebraska Current Phenotypic Based Analysis

Incorporation of DNA Tests

Introduction

Tenderness Example

Accuracies

Interim EPDs

Implementation

• Sources of information:

- Phenotypic records on the trait of interest
- Phenotypic records on correlated traits
- Pedigree information
- Evaluation
 - Best Linear Unbiased Prediction

Introduction

- Tenderness Example
- Accuracies
- Interim EPDs
- Implementation

- Overall this approach works well
- Phenotypic data may be limited
 - Difficult to collect
 - For example: Carcass traits
- Need complementary sources of information
 - DNA Information
 - Summarized into MBVs or Marker Scores

Introduction

Tenderness Example

Accuracies

Interim EPDs

Implementation

• DNA Information

- Single marker
- Several markers

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ

Introduction

- Tenderness Example
- Accuracies
- Interim EPDs
- Implementation

• DNA Information

- Single marker
- Several markers
- Thousands of markers

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ

Sequence data

Introduction

- Tenderness Example
- Accuracies
- Interim EPDs
- Implementation

- DNA Information
 - Single marker
 - Several markers
 - Thousands of markers
 - Sequence data
- Summarized into marker scores
 - Estimated from reference populations
 - Flexibility to handle evolving molecular technology
 - Flexibility to handle evolving statistical methodology

12/51

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ

Introduction

- Tenderness Example
- Accuracies
- Interim EPDs
- Implementation

- Conceptually marker scores can be viewed as a correlated trait
 - Similar to using Birth Weight when evaluating Calving Ease
 - Observable trait
 - Underlying genetic component which is correlated to the trait of interest

Tenderness Example

Incorporation of DNA Tests

Introduction

Tenderness Example

Phenotype Only Model Full Model Marker Only Model Reduced Models

Accuracies

Interim EPDs

Implementation

- Warner-Bratzler Shear Force (kg)
- 410 steers
- 14 sires
- 36 contemporary groups
- Marker scores
 - Pfizer GeneSTAR Tenderness

- Igenity Tenderness
- MMI Tru-Tenderness

Incorporation of DNA Tests

Introduction

Tenderness Example

Phenotype Only Model Full Model Marker Only Model Reduced Models

Accuracies

Interim EPDs

Implementation

• Phenotypic Model (Single Trait Model)

- Only include phenotypic data
- Fixed: Contemporary group
- Random: Direct additive effect

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Residual

Incorporation of DNA Tests

Introduction

Tenderness Example

- Phenotype Only Model Full Model Marker Only Model Reduced Models
- Accuracies
- Interim EPDs
- Implementation

• Phenotypic Model (Single Trait Model)

- Only include phenotypic data
- Fixed: Contemporary group
- Random: Direct additive effect
- Residual
- Marker Model (Three Trait Model)
 - Fixed: Company baseline effect
 - Random: Direct additive effect

Incorporation of DNA Tests

Introduction

Tenderness Example

- Phenotype Only Model Full Model Marker Only Model Reduced Models
- Accuracies
- Interim EPDs
- Implementation

• Phenotypic Model (Single Trait Model)

- Only include phenotypic data
- Fixed: Contemporary group
- Random: Direct additive effect
- Residual
- Marker Model (Three Trait Model)
 - Fixed: Company baseline effect
 - Random: Direct additive effect

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

• Full Model (Four Trait Model)

Incorporation of DNA Tests

Introduction

Tenderness Example

- Phenotype Only Model Full Model Marker Only Model Reduced Models
- Accuracies
- Interim EPDs
- Implementation

- Phenotypic Model (Single Trait Model)
 - Only include phenotypic data
 - Fixed: Contemporary group
 - Random: Direct additive effect
 - Residual
- Marker Model (Three Trait Model)
 - Fixed: Company baseline effect
 - Random: Direct additive effect
- Full Model (Four Trait Model)
- Reduced Models
 - Use all available phenotypic and marker scores
 - Exploit commonalities in the genetic basis of the marker scores

Phenotypic Accuracies

of DNA Tests	
ntroduction	
Tenderness Example	
Phenotype Only Model	
Full Model Marker Only Model Reduced Models	
Accuracies	

Interim EPDs

Implementation

Generation	Median	Range
Sire	0.30	0.00-0.39
Progeny	0.21	0.00-0.24

• Accuracies are greater in the sires compared to the progeny.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Full Model

Incorporation of DNA Tests

Introduction

Tenderness Example

Phenotype Only Model

- Full Model Marker Only Model Reduced Models
- Accuracies

Interim EPDs

Implementation

• Included four traits

- Shear Force
- Company A Marker Score
- Company B Marker Score
- Company C Marker Score
- Genetic variances for the shear force and marker scores
- Genetic Correlations of shear force with each of the marker scores
- Genetic correlations between the marker scores
- No residual variation in the marker score

Nebraska Lincoln	Median Accı	iracies	
Incorporation of DNA Tests			
Introduction			
Tenderness Example			Model
Phenotype Only Model		Generation	Phenotypic
Full Model Marker Only		Sire	0.30
Model Reduced Models		Progeny	0.21
Accuracies			
Interim EPDs			
Implementation		ncreases with	the addition

reases with the addition of marker information

Full 0.34 0.30

• Benefit is greatest for the individual who is genotyped

22/51

23/51

 $\equiv \rightarrow$

Marker only model

- Introduction
- Tenderness Example Phenotype Only Model Full Model Marker Only Model Reduced Models
- Accuracies
- Interim EPDs
- Implementation

- Used genetic parameter estimates from the full model
 - Estimation of genetic correlations between the shear force and marker scores requires that both be observed in the same data set.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Excluded all shear force data when predicting the shear force EPDs

Median Accuracies

of DNA Tests
Introduction
Tenderness Example
Phenotype Only Model Full Model
Marker Only Model
Reduced Models

Interim EPDs

Implementation

ModelGenerationPhenotypicFullMarkerSire0.300.340.13Progeny0.210.300.16

- Marker only accuracy is greatest in the individual who is genotyped.
- Once an individual has been genotyped, genotyping additional relatives doesn't have a direct impact on accuracy.

Full versus Marker EPDs (r=0.72)

Full versus Marker EPDs (r=0.77)

- Introduction
- Tenderness Example Phenotype Only Model Full Model Marker Only Model
- Reduced Models
- Accuracies
- Interim EPDs
- Implementation

- Given the actual genetic parameters
 - Full model produces the BLUP of the EPD
 - Same criteria used for the current phenotypic based evaluations
 - Accuracies and Interim EPDs are available using standard approaches

Need for a Reduced Model

Incorporation of DNA Tests

Introduction

Tenderness Example Phenotype Only Model Full Model Marker Only Model Reduced Models

Accuracies

Interim EPDs

Implementation

- A direct implementation of this approach would require a new trait whenever a new (or modified) marker score is introduced
 - Increases the computational and memory requirements

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

• Reduced models will allow for the evolution of marker scores while keeping the computational and memory requirements within reason

Conceptual framework

Incorporation of DNA Tests

Introduction

Tenderness Example

Phenotype Only Model Full Model Marker Only Model

Reduced Models

Accuracies

Interim EPDs

Implementation

- Given the common genetic basis of the marker scores it is expected that they will share a number of common features
- Partition a marker score into two independent components

Conceptual framework

Incorporation of DNA Tests

- Introduction
- Tenderness Example Phenotype Only
- Model Full Model Marker Only
- Model
- Reduced Models
- Accuracies
- Interim EPDs
- Implementation

- Given the common genetic basis of the marker scores it is expected that they will share a number of common features
- Partition a marker score into two independent components
 Component associated with the true EPD of the trait
 Posidual component
 - Pesidual component

EPD Component

Incorporation of DNA Tests

Introduction

- Tenderness Example Phenotype Only Model Full Model Marker Only Model Reduced Models
- Accuracies
- Interim EPDs
- Implementation

- Each marker score will have its own weight component (b)
 - Function of the genetic correlation between the marker score and the phenotypic trait.
- Allows for different units between the marker score and phenotypic trait.
- Allows for multiple marker scores on an individual animal.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

• Maintains the sparsity and the size of the estimating equations.

Residual Component

Incorporation of DNA Tests

Introduction

- Tenderness Example Phenotype Only Model
- Full Model Marker Only
- Model
- Reduced Models
- Accuracies
- Interim EPDs
- Implementation

- Models the proportion of variability in the true EPD not accounted for by the marker scores.
 - The greater the correlation between a marker score and the EPD the smaller the residual variance.
- The correlation in the residual components accounts for redundant information in multiple marker scores.
 - Allow a quantification of the gain in accuracy from using multiple marker scores.

Introduction

- Tenderness Example Phenotype Only Model Full Model
- Marker Only Model
- Reduced Models
- Accuracies
- Interim EPDs
- Implementation

- If marker scores are only available on unrelated animals.
 - There will be only a trivial impact on the computational requirements.
- For related animals
 - Introduces an extra trait for each marker
- However, because of the independence of the residual component from the effects of interest
 - Should be possible to reduce the number traits, with a minimal impact on the estimated EPDs

Reduced Models Examined

Incorporation of DNA Tests

Introduction

- Tenderness Example
- Phenotype Only Model Full Model Marker Only Model
- Reduced Models
- Accuracies
- Interim EPDs
- Implementation

• Because observations were collected on half-sibs the residual components will be correlated

- Two reduced models were compared to four trait combined model.
 - Three trait model
 - Two trait model

Full versus Three Trait EPDs (r=0.99)

Combined EPD

0.6

Comparison with the Phenotype Model

ロトス団を入住を入住する。

Accuracies

Incorporation of DNA Tests

- Introduction
- Tenderness Example
- Accuracies
- Interim EPDs
- Implementation

- Calculated using a h² of 0.4 and a genetic correlation between the marker scores and shear force of 0.45.
- Single Marker Score with 10 sires and 10 progeny/sire

		Accuracy		
Phenotype	Genotype	Sire	Progeny	
Progeny	None	0.27	0.24	
Progeny	Progeny	0.28	0.29	
Progeny	Sire	0.31	0.25	
Progeny	Both	0.33	0.29	

Nebraska Lincoln	Without	Phenotype	Informat	ion		
Incorporation of DNA Tests						
Introduction						
Tenderness Example				•		
Accuracies				Ac	curacy	
Interim EPDs		Phenotype	Genotype	Sire	Progeny	
Implementation		None	Progeny	0.07	0.11	
		None	Sire	0.10	0.02	
		None	Both	0.10	0.11	

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ▲□▶

Nebraska Lincoln	Single Pr	ogeny/Sire	9		
Incorporation of DNA Tests					
Introduction					
Tenderness Example				Ac	curacy
Accuracies		Phenotype	Genotype	Sire	Progeny
Interim EPDs		Progeny	None	0.05	0.20
Implementation		Progeny	Progeny	0.05	0.25
		Progeny	Sire	0.13	0.21
		Progeny	Both	0.13	0.25

◆□▶ ◆圖▶ ◆厘▶ ◆厘▶

æ

Nebraska Lincoln	Without	Phenotype	e Informat	ion		
Incorporation of DNA Tests						
Introduction						
Tenderness Example				۸		
Accuracies				Ac	curacy	
Interim EPDs		Phenotype	Genotype	Sire	Progeny	
Implementation		None	Progeny	0.02	0.10	
		None	Sire	0.10	0.02	
		None	Both	0.10	0.10	

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ▲□▶

- Introduction
- Tenderness Example
- Accuracies
- Interim EPDs
- Implementation

- Once an individual has been genotyped there is minimal benefit in terms of accuracy to genotyping relatives.
 - Indirect benefit, if the genotyped ancestor has phenotypic information.

• Greatest benefit from genotyping is for animals with limited phenotypic information.

Interim EPDs

Incorporation of DNA Tests

- Introduction
- Tenderness Example
- Accuracies
- Interim EPDs
- Implementation

- Simplified, an interim EPD:
 - Takes the EPD from the current evaluation
 - Typically based on the parental EPDs
 - Along with new information
 - Typically based on an individual's own adjusted record deviated from the adjusted records of its contemporaries,

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

• The new information is then given a weight and added to the individual's current EPD to produce an interim EPD.

Marker Score Interim EPDs

Incorporation of DNA Tests

- Introduction
- Tenderness Example
- Accuracies
- Interim EPDs
- Implementation

- A marker score on an individual is a new piece of information
 - Marker score would need to be adjusted in the same way a phenotypic record is adjusted
 - Using the appropriate weight the adjusted marker score is added to the current EPD to produce a marker score interim EPD.
 - The weight will be a function of the genetic variances and covariances.

- Introduction
- Tenderness Example
- Accuracies
- Interim EPDs
- Implementation

- Methodology is in place.
- Methodology is based on a robust and familiar statistical foundation.
 - EPDs, Accuracies, and Interim EPDs will be available

- Extension of the current approach to genetic evaluation.
 - Can make use of lessons already learned

What needs to be done?

Incorporation of DNA Tests

- Introduction
- Tenderness Example
- Accuracies
- Interim EPDs
- Implementation

- Estimation of genetic parameters
 - Resource populations for estimation of genetic parameters
- Reporting criteria
 - Evaluate the effect of selective reporting
- Criteria for determining when a marker score is ready to be included

- Step beyond validation
- Evaluate the trade off between computational requirements and model complexity
- Software development